Basic Semantic Search with Cohere
In this tutorial, we cover using sentence embeddings for semantic search using Cohere in a Gradient Notebook
In this tutorial, we cover using sentence embeddings for semantic search using Cohere in a Gradient Notebook
In this followup article, we will be taking a look at another beneficial use of autoencoders. We explored how an autoencoder's encoder can be used as a feature extractor with the extracted features then compared using cosine similarity in order to find similar images.
In this article, we talk about what Dense Passage Retrieval is, how it works, and its uses. We also show how to implement it using the Simple Transformers python library in a Gradient Notebook.
In this article, we will see some GANs improvements over time, then we go through the revolutionary ProGAN paper to see how it works and understand it in depth.
In this tutorial, we show how to apply model interpretability algorithms from Captum on simple models. We demo building a basic model and use attribution algorithms such as Integrated Gradients, Saliency, DeepLift, and NoiseTunnel to attribute the image's label to the input pixels and visualize it.
In this article we took a look at one of the uses of autoencoders: image denoising. In this tutorial, we show how an autoencoder's representation learning allows it to learn mappings efficient enough to fix incorrect pixels/datapoints.
In this article, we'll go over how to set up NLTK in a paperspace gradient and utilize it to carry out a variety of NLP operations during the text processing stage. Then, we will create a Keras model with the help of some NLTK tools for sentiment analysis text classification.
In this article, we look at the steps for creating and updating a container for the Stable Diffusion Web UI, detail how to deploy the Web UI with Gradient, and discuss the newer features from the Stable Diffusion Web UI that have been added to the application since our last update.
A new class of deep learning called a generalist model is capable of running on images, text, audio, video and more all at the same time. Here we explore the capabilities of 3 of these models: Perceiver IO, Data2vec, and Gato. We show how to run Perceiver IO on Paperspace.